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CHAPTER 6

Testing for optimality in the absence
of convexity

Herbert E. Scarf

1 The fundamental theorems of welfare economics

The modern treatment of the fundamental theorems of welfare economics
was developed by two of the masters of our trade: Kenneth J. Arrow (1951)
and Gerard Debreu (1951). The contrast between their presentation and
that offered by a distinguished predecessor - Abba Lerner - is a striking
illustration of the emergence of a new line of argumentation in economic
theory. The index to Lerner’s book, The economics of control (1944),
contains not a single reference to convex sets nor to the separating hyper-
plane theorem: The basic mathematical tools used by Arrow and Debreu
to demonstrate the relationship between prices and Pareto optimality.

The first major theorem of welfare economics states that a competitive
equilibrium is a Pareto-optimal production and distribution plan. The
proof offered by Arrow is astonishingly brief; a line or two of mathemat-
ical argument replaces the tedious evaluation of vast arrays of marginal
productivities and marginal rates of substitution. Moreover, convexity
assumptions are required neither on the consumption nor production sides
of the economy, though, of course, in the absence of such assumptions,
the theorem is, in general, vacuous. The second major theorem - that
a Pareto-optimal production and distribution plan can be supported by
competitive prices — does require that consumer preferences satisfy a con-
vexity assumption and that production sets be convex. Its proof is then
a simple exercise in the application of Minkowski’s separating hyperplane
theorem.

The separating hyperplane theorem was in the air during the late 1940s.
It had been used to provide an elementary proof of von Neumann’s mini-
max theorem for two-person zero-sum games; and as Arrow remarks in
his collected papers (1983), he had been present at a lecture given by Albert
Tucker in which a variant of the separating hyperplane theorem was used
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to demonstrate the existence of supporting prices for the general convex
programming problem. The Kuhn-Tucker theorem can, of course, be
viewed as a special case of the second welfare theorem in which there is
a single consumer with a utility function depending only on the good
whose output is being maximized. A further specialization to the linear
activity analysis model of production leads directly to the economically
significant aspect of the duality theorem for linear programming: the ex-
istence of prices that yield a zero profit for those activities in use at the
optimum and a nonpositive profit for the remaining activities.
The general convex programming problem can be put in the form

max f,(x;, ..., X,)
subject to fi(x,,...,x,)<b,,

Sn(Xys s X,)<Db,,,
x=0,

and the appropriate convexity requirement is embodied in the assump-
tion that f; is a concave function and that fi, ..., f,, are convex functions
of their arguments. Assuming that the constraints are consistent, that the
problem has a finite maximum at x*, and that a mild regularity condition
known as the constraint qualification holds, the second welfare theorem
asserts the existence of nonnegative prices «y, ..., 7, with the property
that

m

m
Sox®) =X wtb, = fo(x)— X ¥ f,(x) forall x=0.
1 1

The first welfare theorem may be interpreted in this context by saying
that a feasible vector of activity levels x* is the constrained maximum if
there exists a nonnegative vector of prices 7*, one for each constraint,
such that profits are maximized at x*. A test based on prices is sufficient
to verify that a proposed feasible solution is optimal, and under the as-
sumption of convexity, such a pricing test is always available.

With the additional assumption that f,(x) is strictly concave, and that
each f,(x), fori=1, ..., m, is strictly convex, a numerical algorithm based
on the Walrasian tdtonnement, may be shown to converge globally to the
correct vector of prices w*. Let w be an arbitrary nonnegative price vec-
tor, and let x(w) maximize

m

Sox)=3 m, f(x) forall x=0.
1
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The excess demand for the ith factor of production is then

Si(x(m)—b,.

Our economic intuition that the price of a factor in excess demand will
rise, and that the price of a factor whose demand is less than its supply will
fall, may be captured by the system of nonlinear differential equations

dr, /dt = f,(x(x))—b,.

Given an arbitrary initial price vector , the system of differential equa-
tions will typically have a solution , () with 7,(0) = w,. In the interest of
simplicity, let us assume that «,(r) > 0 for all 7 and that w} > 0; otherwise,
the differential equations must be modified so as to ensure that none of
the prices become negative.

This system of differential equations is formally identical to the system
introduced by Samuelson (1941-2) and studied extensively by Arrow and
Hurwicz (1958) and Arrow, Block, and Hurwicz (1959) in the more gen-
eral context in which consumers are explicitly incorporated in the model.
I was first made aware of the problem of global stability of the price ad-
Jjustment mechanism by Arrow himself during the close personal and pro-
fessional association that I was privileged to enjoy in the late 1950s at
Stanford.

With the considerable hindsight offered by several decades of continued
research we now know that the Walrasian tG@ronnement need not be glob-
ally stable; a model of exchange may easily be constructed so that the
solution to the system of differential equations traces out any path on the
nonnegative part of the unit sphere. But these complexities are related to
the presence of consumers in the model; in the special case of convex pro-
gramming, the price adjustment mechanism may be shown to be globally
stable by verifying that ¥, («, (¢£)— 1r,*)2 decreases to zero along the solu-
tion path.

The pricing test for optimality is also available for the general linear
programming problem:

max ag, X;+ -+ +ay, X,
ayx+ - +a,,x,zb,,

Xy + - +a,,x,=b,,,

mn—n—
x=0.

a/nl

A feasible solution to the system of inequalities is optimal if a vector of
prices can be found such that each activity in use makes a profit of zero
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and the remaining activities make a nonpositive profit. And in a spirit
that is similar to the Walrasian price adjustment mechanism, the search
for economically significant prices is at the heart of that workhorse of
linear programming: the simplex method. In the simplex method, a fea-
sible solution to the system of linear inequalities is proposed, and prices
are found so as to yield a profit of zero for those activities being used.
The feasible solution is optimal if none of the remaining activities make
a positive profit; otherwise, we select one of the profitable activities and
use it at a positive level, making compensating changes in the activity
levels previously specified. When one of those activity levels drops to zero,
the pricing test is repeated, and optimality is reached in a finite number
of iterations.

The convexity assumption is the mortar that binds together this re-
markable edifice of existence theorems and computational algorithms.
Unfortunately, convexity of the production set is not a strikingly realistic
description of economic reality. Convexity requires that the production
possibility set exhibit constant or decreasing returns to scale: That you or
I can manufacture automobiles in our own backyards with the same de-
gree of efficiency as that achieved by the Ford Motor Co. Economies of
scale based on large indivisible pieces of machinery or forms of productive
organization such as the assembly line, which are not economically mer-
ited at small scales of operation, are a major ingredient of the industrial
revolution of the last 100 years. And their workings cannot be captured,
either theoretically or computationally, by the competitive paradigm.

The following quotation shows most clearly Lerner’s appreciation of
the incompatibility between indivisibilities and competitive markets: “We
see then that indivisibility leads to an expansion in the output of the firm,
and this either makes the output big enough to render the indivisibility
insignificant, or it destroys the perfection of competition. Significant indi-
visibility destroys perfect competition” (Lerner 1944, p. 176).

2 Neighborhood systems for production sets with
indivisibilities

The most extreme example of a production possibility set involving indivis-
ibilities is that described by an activity analysis model in which the activity
levels are required to assume integral values. The mathematical program-
ming problems that then arise by specifying a particular factor endow-
ment are known as infeger programming problems and have the form
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max ag by + -+ +ay,h,,
ayh+-+a,h,=b),

a,h+---+a,,h,=b,,
and hy,..., h, integral.
In contrast to linear programming, the optimal solution to an integer

programming problem need not be supported by competitive prices. Con-
sider, for example, the integer program

max —4h, —3h,,

2h+ h,=3,
n =0,
hy,=0,

and &y, h, integral. The constraint set is drawn in Figure 1, with the ob-
jective function indicated by a dashed line.

When the integrality assumption is relaxed, the optimal solution to the
corresponding linear program is to use only the first activity at the level
of 3. If the prices associated with the objective function and the first con-
straint are in a 1:2 ratio, the first activity will make a profit of zero and
the second activity a negative profit. A decentralized profit maximizing
response will lead to the selection of activities that are consistent with the
optimal solution to the programming problem. On the other hand, when
the variables are required to be integral, the optimal solution is at the
point (1, 1). Both activities are used at the optimal solution, and there is
no price ratio yielding a zero profit for the two activities simultaneously.

The phenomenon illustrated by this example is a general one: Indivis-
ibilities in production are incompatible with competitive factor markets.
Prices are not available to verify that a feasible solution to an integer pro-
gramming problem is actually optimal, and no computational algorithm
based on prices can be successful in general. Of course, the subject of
integer programming is not a new one, and there are many algorithms
that perform quite well in practice, but I am unaware of any computa-
tional procedure the steps of whose execution are capable of the most
rudimentary economic interpretation in terms of prices.

What I have proposed in a series of publications (Scarf 1981; in press) is
the replacement of the neoclassical pricing test for optimality by a quan-
tity test; more specifically, by a search through neighbors of a proposed
feasible solution to see whether a nearby vector of activity levels is also
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o ° %o, ° °

Figure 1. An example.

feasible and yields an improvement in the objective function. Consider the
general integer program with » variables, ranging over all lattice points
in n-dimensional Euclidean space. By a neighborhood system, 1 mean
the association with each lattice point 4 of a finite set of neighbors N(#);
the association is arbitrary aside from the following two requirements:

1. if ke N(h), then he N(k) and
2. N(h)=h+N(0).

The first assumption states that the neighborhood relation is a symmetric
one and the second that the neighbors of any two lattice points are trans-
lates of each other.

Given an integer program described by the technology matrix

Qoo 4oy "0 o
A= dyo 4 - dp
a, a

ml m2 Dn
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and a specification of the right-hand side b= (b,, b,, ..., b,), an arbitrary
neighborhood system can be used to define the concept of a local maxi-
mum: a feasible vector of activity levels 4 all of whose neighbors k € N(A)
are either infeasible or yield an inferior value of the objective function.

In general, a local maximum with respect to a particular neighbor-
hood system need not be a global maximum to the programming prob-
lem; a particular neighborhood of a feasible point may simply omit some
vector of activity levels that is also feasible and that improves the objec-
tive function. Moreover, such an improvement need not take place at a
lattice point that is close to the original feasible vector in the sense of
Euclidean distance. To see this, we merely remark that integer programs
based on the technology matrices A and AU, with U a unimodular ma-
trix (a nonsingular matrix with integer entries and a determinant of +1)
are equivalent: If A is the optimal solution to an integer program with
technology matrix A, then #’= U ~'A is the optimal solution to the corre-
sponding problem with matrix AU. But unimodular transformations do
not preserve Euclidean distance, and nearby points may be mapped into
points that are quite far apart.

The following theorem may be demonstrated quite easily (Scarf, 1984).

Theorem 2.1. Under mild regularity assumptions on the technology ma-
trix A, there exists a unique, minimal neighborhood system such that a
local maximum is global for all integer programs based on A. This neigh-
borhood system depends on the technology matrix alone and not on the
specification of the particular factor endowment.

The regularity assumptions referred to in the statement of Theorem
2.1 may be stated as follows:

Assumption 2.2. For each b= (b, by, ..., b,,), the set of integral vectors
h such that Ah=b is finite. Moreover, the entries in each row of A are
independent over the integers in the sense that ¥, a, h,=0 forany 1 im-
plies that 2=0.

To demonstrate Theorem 2.1, we argue that two lattice points # and A’
must be neighbors - in any neighborhood system for which a local max-
mum is global - if there is some vector b= (b, b,, ..., b,,) such that the
only lattice points satisfying A% = b are 4 and 4’ themselves. For let b be
such a vector and assume that X, a, 4/ >% a,h,. It follows that # is a
feasible solution to the integer program
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max ag b, + -+ +ay,h,,
a b+ - +a,h,=by,

a,h+---+a,h,=b

mn

h integral,

n»

and that A’ is the only other feasible solution yielding a higher value of

the objective function. If A’ were not a neighbor of A, then # would - in-

correctly - be chosen as the optimal solution for this particular problem.
The set

S={x

is the smallest convex body containing the two lattice points # and 4’ ob-
tained by varying the right-hand side b. If this set contains some addi-
tional lattice points, then 4 and A’ need not be selected as neighbors in
the minimal neighborhood system. For if this were so, then in any par-
ticular problem for which # is feasible, the test for optimality need not
involve #’; the other lattice points in S will do just as well.

Invariance under translation implies that a complete description of
the minimal neighborhood system is given by the set of neighbors of the
origin. A formal proof of Theorem 2.1 is then obtained by defining, for
each lattice point &, the set

Sk={X

and a partial ordering among nonzero lattice points by k£ < &’ if and only
if S, €S,.. From Assumption 2.2, each lattice point is preceded by a finite
number of other lattice points in this ordering, and there are no pairs for
which k <k’ and k’ < k. The minimal points in this ordering constitute
the minimal neighborhood system for which a local maximum is global.

The minimal neighborhood system is robust under smalil changes in
the technology matrix A as long as Assumption 2.2 is maintained. There
may be a sudden discontinuity in the neighborhood system when we pass
through a position in which a nonzero lattice point happens to lie on one
of the hyperplanes E/ a,,x,=0. Moreover, as Figure 2 illustrates, there
may be a certain ambiguity at such a position in the definition of the min-
imal neighborhood system itself. The ambiguity, though not the discon-
tinuity, may be resolved by adopting a lexicographic tie-breaking rule for
coordinates of the vectors y = Ah.

?aux/ 2min<§a,jhj, ?a”hj’>, fori=0,1, ,m}

ga”szmin(o, Ea,jkj) for i=0, 1,...,m3,
J
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(0,0)

Figure 2. Degeneracy.

3 Complexity of the neighborhood system

Given a description of the minimal neighborhood system, the most im-
mediate algorithm for the solution of integer programming problems is a
repeated neighborhood search: A specific feasible solution is proposed
and all of its neighbors are examined to see whether one of them is also
feasible and yields a higher value of the objective function. If there is
such a neighbor, we move to it and iterate; if not, the original feasible
vector is optimal.

The amount of computational work associated with this algorithm de-
pends at first glance on the cardinality of the set of neighbors. It is ele-
mentary to show that for a technology matrix with three rows and two col-
umns, the minimal neighborhood system will consist of precisely six
points. But, aside from this special case, the cardinality of the set of neigh-
bors is not bounded by any function of the number of rows and columns
of A and may become arbitrarily large for problems in which 2 and » are
fixed.

The cardinality of the set of neighbors is, however, a crude estimate of
the work required by a neighborhood test for optimality. The set of
neighbors of the origin may display sufficient structure so that each neigh-
bor need not be examined individually. The minimal neighborhood of
the origin may, for example, be the disjoint union of a small number of
integral linear segments, as illustrated in Figure 3. Since deciding whether
some neighbor in a linear set yields a feasible improvement can be carried
out by a small number of divisions, structural regularities in the minimal
neighborhood system may lead to a considerable reduction in computa-
tional work.

The language of the theory of computational complexity may be used to
formulate a general conjecture about minimal neighborhood systems that,
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Figure 3. Neighbors of the origin.

if correct, would convert repeated neighborhood searches into an efficient
algorithm for integer programming problems. In this theory, the size or
complexity of the technology matrix A is defined to be the number of bina-
ry bits required to store the entries of 4 in a digital computer. The number
of binary bits required to store an integer a is given by 1+ [log, (|a|+1)],
with [x] the smallest integer greater than or equal to x (the additional 1
preceding the logarithm is used to store the sign of a). If the entries in the
technology matrix are integers, its size is therefore given by

m n

S= 20 El(l+ﬂog2(la,j|+l)—|).
1=0 y=

An algorithm for the solution of integer programming problems is said
to be polynomial if the number of steps required for the algorithm to
execute successfully is bounded from above by a polynomial function of
the size of the problem. Integer programming problems are known to be
NP complete, a class of difficult problems for which a polynomial algo-
rithm is extremely unlikely to exist. When the number of variables, or for
that matter the number of constraints, is fixed in advance, the class of
problems is no longer NP complete and Lenstra (1983) has provided a
remarkable algorithm that is indeed polynomial in the size as the remain-
iong parameters of the technology matrix vary. To the best of my knowl-
edge, however, Lenstra’s algorithm has not been tested on a variety of
problems, and it may be similar to Katchian’s algorithm for linear pro-
gramming - polynomial in theory, but computationally inefficient.
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In a previous publication, I have determined the minimal neighborhood
system for a small class of integer programming problems including the
transportation problem and the knapsack problem with two activities. In
each of these problems, the neighborhood system displays sufficient struc-
ture so that a repeated neighborhood search may be accelerated so as to
yield a polynomial algorithm. Based on these examples and Lenstra’s con-
clusion, I conjecture that the minimal neighborhood system has a struc-
tural description that is polynomial in the data of the problem whenever
the number of variables is fixed in advance. Such a description, if possible,
may also be capable of economic interpretation in terms of the internal
organizational structure of a large economic enterprise whose production
possibility set is dominated by significant indivisibilities.

4 Example

In this section, I shall describe a class of technology matrices whose min-
imal neighborhood systems can be determined by means of a relatively
simple algorithm. I do not know, however, whether these neighborhood
systems are capable of being described in a polynomial fashion, though
I suspect rather strongly that such is the case. The examples show, in
a striking fashion, the subtle number-theoretic considerations involved
in verifying the general conjecture concerning a polynomial description
of the minimal neighborhood system and certainly warrant continued
investigation.

One of the basic problems in integer programming is the following:
Given a finite set of lattice points in R”, is there an additional lattice point
in their convex hull? I shall consider a specialization that is by no means
devoid of interest. The finite set will consist of n+1 lattice points, the first
n of which are the unit vectors, and the (n+1)st point a general integer
vector a =(a,, a,, ..., a,) all of whose coordinates are strictly positive.

Mathematically, we are concerned with finding an integer vector
(hys hys ...y hy,) such that

h, a 1 - 0]( e
0 1| e,

with1>«, =20, and o+ -+ +, = 1. There is a simple algorithm that per-
mits us to determine such a vector if it exists. Adding the » equations,
we obtain
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(hy+ - +h)=agla++a,)+a+ - +a

n
=op(a+ - +a,)+1—q,

so that ag=h/D with h=h,+ - +h,—1 and D=a,+ - +a,—1. But
then 4, =« +h-a,/D, so that h,=[ha,/D]. If we define, for integer s
between 1 and D—1, the function

fimy=3 Tha,/Dl.

J=1
we see that a necessary and sufficient condition for the existence of an
additional lattice point in the convex hull is that
Sfhy=h+1,

for some h=1,2,..., D—1. The lattice point will be strictly interior to the
convex hull if aJ>0 for j=1,2,...,n, orif ha, /D is not integral. It will
simplify our subsequent analysis if we impose the following condition,
which implies that all such lattice points are strictly interior.

Assumption 4.1. For each j, a, and D are relatively prime.

For example, let n=3, and (a,,a,,a;)=(3,4,5), so that D=11. The
function f(4) is then

h|1234567 8 910
f) 133567891012 12

The fact that f(2) =3 implies that
(1,1, 1)=[3-2/11], {4-2/11], [5-2/11]

is the convex hull of the three unit vectors and (3, 4, 5).

The problem has an analytical answer only when n=2 or 3. For n=2,
a necessary and sufficient condition that the triangle with vertices (1, 0),
(0,1), and (a,, a,), with a,, a, positive integers, be free of additional lat-
tice points is simply that (@, a,)=(1,1). (See Fig. 4.)

The solution for n=3 provided by Roger Howe a number of years
ago is striking. [Proofs of Howe’s theorem may be found in Scarf (1985)
and Resnick (in press).] A necessary and sufficient condition that the tet-
rahedron with vertices (1,0, 0), (0,1,0), (0,0,1), and (a,, a,, a;), with a,
positive integers, be free of additional lattice points is that one of the
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(5,3)

(0,1)

(1,0)

Figure 4. The case n=2.

(1, 399 63)

(1,0,0)

Figure 5. The case n=3.

three integers a,, a,, a; be unity and the other two relatively prime. (See
Fig. 5.)

When n > 3, no characterization is presently known for those positive
integral vectors (ay, ..., a,) that, in conjunction with the » unit vectors,
give rise to a convex body free of additional lattice points; it seems highly
unlikely that there is a simple characterization. The algorithm based on
the function f(4) is available for any such vector (a,,a,,...,a,), but it
requires D = —1+2 a, steps, a quantity that is not polynomial in the size
of the problem: ¥ (1+ I—logz(a/+1)—l. It will be instructive to pose the
problem as an integer program and to determine its minimal neighbor-
hood system.

The convex hull of our set of n+1 lattice points is the intersection
of n+1 half-spaces, each generated by a hyperplane of dimension n—1.
The hyperplane passing through the # unit vectors is x,+ « -+ +x,=1; the
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(ag, a,)

Figure 6. A pair of neighbors.

hyperplane passing through (a,, a,, ..., a,) and all of the unit vectors other
than the jth unit vector is

Dx,—a,(x;+ -+ +x,)=—a,.

It follows that the convex hull is defined by the following system of linear
inequalities:

1 1 1 1
D—a —a, - -—aq —q
_a2 D_az e _az X = _a2
—a, —a, D—a, —-a,

The matrix of coefficients will be denoted by A.
The solution to the integer program

max hy+ hyt+ -+ h,,
(D—a))h,— ahy,—---— ah,=—a,,
_a2h1+(D_a2)h2“"'_ azhnZ_az,
—a, h — a,hy—--+(D—a,)h,=—a,,
h integral,

is (ay, a5, ..., a,). If the convex hull contains an additional lattice point
(let 4* be one that maximizes s, + --- + 4,), then #* and (q,,a,,...,a,)
will be neighbors of each other. (See Fig. 6.)

The entries in the technology matrix A4 are integers and therefore vio-
late the second part of the nondegeneracy Assumption 2.2. In order to
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resolve the resulting ambiguity in the definition of the minimal neighbor-
hood system, we adopt the following lexicographic tie-breaking rule:

Lexicographic rule 4.2. Let y = Ah and y’= Ah’. For any particular coor-
dinate i, we say that y; >, y, if the vector (3, ¥, 1s+++s Ygs «++s Yy 1) 1s lexi-
cographically larger than (y,, ¥, 15+ Ygs -5 V,—1)-

The vector y = Ah will then be a neighbor of the origin if there is no
other vector y'=Ah’ with

Yo >min(y,,0),
y{>min(y,,0),

y,>min(y,,0),

all of the inequalities being interpreted in this lexicographic sense.

As the following theorem indicates, the neighbors of the origin for the
technology matrix A bear an intimate relationship with our algorithm for
deciding whether there exists an additional lattice point in the convex hull.

Theorem 4.3. Let (A, h,,..., h,) be a neighbor of the origin with A=
Y1 h,>0. Then, for each j=1,2,...,n,
h,=[a,h/D] or [ah/D]-1.
We begin the proof of Theorem 4.3 by showing that —D =<y, <D for

i=0,1,..., n, for any neighbor of the origin. Assume, to be specific, that
y>>D. Then

B+ Yo m?n(yo, 0)
h—1 »+D min(y,, 0)

A| 2 |=| »,=D|>| min(y,,0) |,
, : :

" Yy min(y,,0)

since each coordinate of (y,, y,+D,y,—D,...,»,), other than the sec-
ond, is lexicographically greater than the corresponding coordinate of
(Yos V1> V25 -++» V), and y,—D > 0. Moreover, since y, > D, (h+1, h,—1,
0,...,0) is not equal to 0 and is therefore a third vector in the smallest
convex set obtained by parallel movements of the inequalities containing
h and 0. A similar argument shows that y, < D for every /; the inequality
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—D <y, follows from the fact that the negative of a neighbor of the origin
is also a neighbor of the origin.
The inequalities —D < y, <D may be rewritten as

n ah ah
—D <Dh,—aq, El;hJsD or —1+—b~sh,sl+7,

and unless @, 4/D is an integer, it follows that
h,=[a,h/D] or [ah/D]-1.

Theorem 4.3 tells us that the neighbors of the origin with X 4, >1 are
contained in the set of points obtained by rounding up or down the coor-
dinates of (a,,a,,...,a,)h/D, with h=1,2, ..., D. Not all of these points
are neighbors of the origin, however. If we write 4, = [a,h/D]—§, with
8,=0,1, then since ¥ h, = h, we must have %, 6, = f(h)—h. Moreover, if
ah=kD+r, with0<r, <D (r,#0since a, and D are relatively prime),
then [a,h/D]=k,+1, and the vector

Y=os Y15 Vs V) =, (1=6)D—r,(1=6,)D—ry,...,(1=6,)D—r,).
It follows that

. O lf 6,=0a
mm(O.y,)—{_r if 6,=1,

!

fori1=1,2, ..., n. The neighbors of the origin with 2> 1 are then obtained
by constructing the list of vectors min(0, y) and eliminating those that
are dominated. When this exercise is carried out for our previous example
in which (a,, a,, a;) =(3, 4, 5), we obtain the following set of neighbors:

(0,1,0) (1,1,0) (1,2,2)
(0,0,1) (1,1,1) (2,2,3)
0,1,1) (1,2,1) (2,3,3)
(1,0,1) (1,1,2) (2,3,4).

This calculation can be performed quite easily on a computer, but it is,
unfortunately, not polynomial in the data of the problem.

A neighbor of the origin with =% k, =0 will also satisfy —D =<y, <
D. Since y,=h,D—a hfori=1,2,..., n, we see that such a neighbor will

have h,=—1,0, or 1, and y,= —D, 0, or D. This observation permits us
to characterize - in terms of the minimal neighborhood system - those
vectors (a;,a,, ..., a,) that, in conjunction with the » unit vectors, gen-

erate a convex body free of additional lattice points.
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Theorem 4.4. Assume that a, and D are relatively prime for each i. The
convex hull of (ay, ...,a,) and the n unit vectors will contain no other lat-
tice points if and only if the minimal neighborhood of the origin associ-
ated with the matrix 4 contains some vectors (4, Ay, ..., h,) with X h,=0.

The proof of Theorem 4.4 proceeds as follows: If the convex hull con-
tains an additional lattice point, then f(/#)=/+1 for some 4. Any neigh-
bor of the origin with 3 h, =0 will have y.= —D for some i*. If we then
define 4, = [a,h/D] -6, with §, =1 for i = i* and §, = 0 otherwise, the vec-
tor = Ah will have the form

(h,D=r,D=rys....~rpsy....D—r,)

and will be strictly larger, in all coordinates, than min(0, y). It follows
that there are no neighbors of the orgin with 3 h,=0.

On the other hand, if the convex hull of (4, a,,...,a,) and the n unit
vectors contains no other lattice points, it will be true that f(h)=h+2
for all 4. From Theorem 4.3, we see that any neighbor of the origin ¢ =
(£05 &p5 -5 &), with £,>1, will have at least fwo coordinates £, and £
that are strictly negative. But if A=(1, —1,0,...,0), then

y=Ah=(0,D, —-D,0,...,0);

min(0, y) cannot be dominated by any neighbor of the origin, and y must
therefore be a neighbor of the origin itself. This demonstrates Theorem
4.4,

REFERENCES

Arrow, K. J. (1951), “An extension of the basic theorems of classical welfare econ-
omies,” in J. Neyman (Ed.), Proceedings of the second Berkeley symposium
on mathematical statistics and probability, Berkeley and Los Angeles: Uni-
versity of California Press, pp. 507-32.

Arrow, K. J. (1983), Collected papers: General equilibrium, Cambridge, Mass.:
Harvard University Press.

Arrow, K. J. and L. Hurwicz (1958), “On the stability of the competitive equi-
hibrium, pt. 1,” Econometrica, 26: 522-52.

Arrow, K. J., H. D. Block, and L. Hurwicz (1959), “On the stability of the com-
petitive equilibrium, pt. 2,” Econometrica, 27: 82-109.

Debreu, G. (1951), “The coefficient of resource utilization,” Econometrica, 19:
273-92.

Lenstra, H. W., Jr. (1983), “Integer programmng with a fixed number of vari-
ables,” Mathematics of Operations Research, 8: 538-48.

Lerner, A. (1944), The economucs of control, New York: Macmillan.



134 Herbert E. Scarf

Resnick, B. (in press), “Lattice point simplices,” Discrete Mathematics.

Samuelson, P. A. (1941-42), “The stability of equilibrium,” Econometrica, 9:
97-120; 10: 1-25.

Scarf, H. E. (1981), “Production sets with indivisibilities,” Econometrica, 49: 1-
32; 395-423.

Scarf, H. E. (1985), “Integral polyhedra in three space,” Mathematics of Opera-
tions Research, 10(3): 403-38.

Scarf, H. E. (in press), “Neighborhood systems for production sets with indivisi-
bilities,” Econometrica.



