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SOME EXAMPLES OF GLOBAL INSTABILITY
OF THE COMPETITIVE EQUILIBRIUM*

BY HERBERT SCARF

IN THIS PAPER we shall consider the problem of stability of the
competitive equilibrium. The market demand functions are sums of
individual demand functions obtained directly by utility maximization.
The rate of change of the price of each commodity is assumed to be
proportional to the excess market demand for that commodity. A
number of examples are given for which the motion of the prices is
globally unstable in the sense that starting from any set of prices
other than equilibrium, the prices oscillate without tending towards
equilibrium.

1. INTRODUCTION

The problem of stability of the competitive equilibrium is described
in [3], and we shall content ourselves with a review®’. Several individ-
vals with utility functions Uz, ---, 2,) for the same commodities
are engaged in the trade of these commodities. Each individual begins
the trading with an initial endowment of goods, say I3, I, - .-, I, for
the ith individual. An initial vector of prices p,, -+, p, is announced,
and each consumer then determines his demand for all of the com-
modities by the usual procedure of maximizing his utility function,
subject to the constraint that his expenditure shall not exceed the
value of his initial endowment of goods at the stated price vector.

For each commodity the sum of the individuals’ demand functions
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minus the sum of the initial endowments of that commodity is called
the market excess demand for the commodity; in this paper.it will be
denoted by fi(p., -+, »,), where the subscript refers to the commodity
in question. (These functions are homogeneous of degree zero and
satisfy the Walras Law }_ p,fi =0.) Excess demand functions for
individuals will always be denoted by =z,. '

An equilibrium price vector is, of course, a vector of prices for
which all of the excess demand functions vanish, and recent work in
this area [2, 8] has shown that under suitable regularity conditions
equilibrium prices will always exist. (Because of the homogeneity of
the demand functions, any positive multiple of an equilibrium is again
an equilibrium, and in this sense we should speak of an equilibrium
ray. There may be several such rays.) The stability problem, on the
other hand, is less concerned with the existence of equilibrium and
more with the question of what happens to the prices if initially they
are different from the equilibrium.

There is nothing in the model described so far which enables us to
compute the motion of prices if we are not at an equilibrium point.
For this we need some specific assumptions on the price adjustment
process, that is, the procedure by which prices may be expected to
change if we are away from an equilibrium price. The intuitive no-
tion that an excess of supply over demand should result in a decrease
in price, and an excess of demand should result in an increase in price,
has been formalized mathematically in [7] and [3] by the statement
that

’%L = Ht[fﬁ(plr Sty pn)] ’

where H, is a sufficiently regular sign-preserving function of its argu-
ment. (These equations are to hold if all p, > 0.) In order to be
concrete, in this paper we shall generally take the functions H to be
equal to their respective arguments, so that for each commodity the
rate of change of price is equal to the excess demand.

Now let us turn our attention to the problem of stability with this
type of adjustment process. Early work in this area [5, 6] tends to
emphasize what might be called ““local’”’ stability; the initial prices are
assumed to be close to some equilibrium point, and an analysis is made
of whether there is a tendency to converge to the equilibrium point,
depart from the equilibrium point, or perhaps even a tendency to more
complex types of behavior. The ‘‘local”’ analysis proceeds by means
of the linear terms of the Taylor series expansion about the equilibrium
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point, thus converting the problem to a linear differential system with
constant coefficients. It is possible in this type of analysis to obtain
many examples of completely unstable equilibria (though it should be
mentioned that there is an uncomfortable tendency for examples to be
produced without any consideration of their origins as market demand
functions derived by the summation of individual demand functions).
The local analysis, however, is somewhat unsatisfactory, in that it is
quite possible for other equilibrium points to exist, and the system
cannot be said to be unstable without examining whether the prices
tend to another equilibrium point.

This consideration leads naturally to the problem of stability in the
“‘global’’ sense [3], which is concerned with the solution of the differ-
ential equations based on the price adjustment mechanism for an
arbitrary initial set of prices. If the solution of the differential equa-
tions approaches some equilibrium point as time becomes infinite, then
we have global stability. Clearly it is quite possible for there to be
several equilibrium points, none of which is completely stable from the
local point of view (that is, attracts all neighboring points) and where
the system, in its entirety, is globally stable.

The problem of global stability, as it has been described above, has
been discussed by several authors. Though alternate methods of proof
have been found, the results do not go essentially beyond those ob-
tained in [1]. There are, first of all, several special cases which can
be mentioned: global stability is known if there is a single consumer,
or if there are only two goods, or if it happens that at some equi-
librium point there is no trade. There is also an unpublished result
of the author’s showing that global stability is known if all of the
consumers have the same homogeneous utility function, but with
different initial distributions of stock. Aside from these very special
cases, the most important result is that global stability will occur if
all of the goods are gross substitutes; mathematically, this means
afJop, > 0 if ¢+ j. Apart from this, very little else has been found;
no assumptions substantially different from gross substitutability have
been shown to imply stability, and up to the present no examples of
instability have been produced.

This paper presents a series of examples, all derived from utility
maximization, which are globally unstable. The examples given here
involve three consumers and three goods, but the techniques may be
extended to either more consumers or more goods. The examples all
involve a rather simple relationship between the utility functions of
the three consumers, namely
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(1) l:fi(xh Xy, xs) = Ul(xm s, xx) ’
U.".(xn &gy xa) = Uz(xzy L3, ml) ’ )

and a corresponding cyelic permutation of the initial endowments.
Specifically, we will assume that if the initial endowments of the first
consumer are (I, J, K) for the first, second, and third goods respec-
tively, then those of the second consumer are (K, I,J) and those of
the third consumer (J, K, I). This relationship is introduced to simplify
the calculations, and, as the method will show, it may be relaxed.

It is an easy consequence of utility maximization that for the price
adjustment process we have selected (rate of change of price equal to
excess demand) the motion of the prices will always be constrained to
the sphere p} + p} + p; = constant. In all of our examples there will
be an equilibrium point at (p, = p, = p,), which, except for the first
example, will be locally completely unstable (there is a small region
around this equilibrium point such that if the initial price is in the
region, the prices will eventually leave this region and stay out). In
the first example the motion of the prices will be in concentric curves
about the equilibrium point, whereas the more complex examples will
give rise to limit cycles.

As we shall see from the examples of Section 3, instability does not
depend on 2 delicate assignment of values of initial stocks or parame-
ters in the utility functions. Though it is difficult to characterize
precisely those markets which are unstable, it seems clear that in-
stability is a relatively common phenomenon.

What are the implications of these examples? It seems to me that
there are several possible interpretations that might be made.

1. One possible interpretation is that the model is substantially re-
alistic and that instabilities of the type described in this paper could
possibly occur. An even more presumptuous interpretation along these
lines is that instability is responsible for some aspects of the business
cycle, though for this sort of interpretation it would seem advisable
to produce examples of instability with a model of a complete economy
rather than a pure trade model alone, and this may be more difficult
to do.

2. Another possible interpretation is that the price adjustment pro-
cess postulated above is not correct. This view can, of course, be held
without any reference to the question of stability. An argument for
this position is that in one sense or another we are considering a
dynamic process, and yet nowhere do the simplest dynamic considera-
tions such as saving, interest, etc. appear in the model.

3. As a final interpretation it might be argued that the types and
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diversities of complementarities exhibited in this paper do not appear
in reality, and that only relatively similar utility functions should be
postulated, and also that some restrictions should be placed on the
distribution of initial holdings. This view may be substantiated by
the known fact that if all of the individuals are identical in both
their utility functions and initial holdings, then global stability obtains.

2. A VERY SIMPLE EXAMPLE OF INSTABILITY

In this section we shall describe a very simple example which leads
to instability. It will be seen that this example is quite an extreme
one. In the next section we shall describe a number of additional
examples which, while somewhat more complex, do not have the dis-
agreeable features of the present one.

Let the utility function of the first consumer be U(x, x,, z,) =
min (2, 2,) and his initial endowments (1, 0, 0). This consumer has no
desire for the third good and his indifference curves for the first two
goods are of the form:

Xz

2 X|

FIGURE 1

For any income M the same quantity will be demanded of goods one
and two and therefore the demand functions are

' M
Y01, D) Doy M) = it
M
’ H ] M = —_— 4
Y01y Py Doy M) P

y3(p1y P2y Pss M) = 0 .
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Now the income of the first consumer is derived from his endow-
ment of a single unit of good one, so that M = p, and therefore the
excess demand functions of the first consumer (supply is being sub-
tracted off now) are given by

— — Py
et m
y = b,
P+ D
2 =0

The excess demand functions of the second consumer are obtained
by a cyclic permutation of all subscripts, 1 —2,2-—3,83—1, and once
more for the third consumer. If we add these together, the market
excess demand functions are given by

fi= =D + D ,
T ptr mtn
fi= —Ds + D, ,
’ L2 + & Dy -+ p,

fi= -0 + Dy

YT ET

and of course the price adjustment process leads to the differential
equations

dp
2 £t = 1r M3y Y3} e
(2) e Ji(®y, Dy D3)

It is a trivial matter to verify that p, = p, = p, is the only equilibrium
point. The fact that ), p! = constant follows from }_ pdp,/dt = 0,
which is the Walras Law. In order to show that the solutions are
unstable we shall demonstrate that »,p,p, = constant for any solution
of (2). This would follow if we could show that

(8) FipaDs + [iDi0s + fiDiDy
equals zero, but (8) is equal to

D0} — D) + 2(pi — P) 4 PupE — i)
D+ D Ps + Dy Ps + s
= PPy — D) + Do(0; — 2) + (P, — D) =0,

That this implies instability is clear. Let the initial prices be chosen
such that p? + p! + p! = 3, so that the intersection of the equilibrium
ray and this sphere is (1,1,1). The value of p,p.p, at equilibrium is
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one, and therefore if the initial price gives a value different from one
to p, 0,0, we never reach equilibrium. It should be remarked that the
maximum of p,p,p, subject to the constraint Y, p} = 8 is actually one,
so that if the initial position is anything other than (1, 1, 1), the path
is completely unstable.

Occasionally the following price adjustment process is discussed.
One of the goods is singled out and its price kept constant; the re-
maining goods are meant to vary according to the differential equa-
tions given above. If, in our case, we put p,=1, then we are led
to the system

dpl — —D + 1 s
dt  p+p: 1+
dp, _ -1 Dy

it mtl ot m
Routine calculations show that for this system
PP~ 50D = const.,
and this is again sufficient to show instability.

3. A CLASS OF EXAMPLES

The example of the previous section has a number of special prop-
erties. All of the Slutsky terms [0y,/9p, + y,(0y,/0M)] are zero, the
indifference surfaces are not strictly convex, and certainly not differ-
entiable, and, finally, the initial holdings are of a rather extreme type.
It might be thought that one, or several, of these properties is re-
sponsible for the instability of the previous example, and that stability
would return if these properties were removed. The examples of the
present section show, however, that it is quite easy to obtain instabil-
ity with none of the objectionable properties mentioned above.

We shall make an attempt to keep the reasoning relatively general
in this section. Some conditions will be described which imply in-
stability, and we shall demonstrate by specific examples that these
conditions may be satisfied.

As was mentioned in the introduction [see equation (1)], the utility
functions of the three consumers will be obtained by a cyclic permuta-
tion of the goods and the initial endowments. This means that if the
excess demand functions of the first consumer are represented by

2,015 Doy Ds)s Xo(Dry Doy D3)s ToDy, Doy Do),

then the excess demand functions of the second consumer for the
first, second, and third goods respectively will be given by
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2y(Dsy Ds» D)y B0y Psy D), oD, D, D)
and those of the third consumer by

Zo(Dsy D1 Do)y Lo(Dss D1y D), T:(Dsy D1y D) ©

(Continuity and differentiability properties of these functions will be
assumed whenever necessary.)

The market excess demand functions are obtained by the summation
of individual demands and are therefore given by:

Fi(Dy, Doy D) = 21(Dy, Doy D3) + oDy, Dsy D) + (D5, D1, D) 5
(4) Fo(D1, Doy D3) = 2Dy, Doy D) + To(Dsy Dsy D) + To(Dsy D1, D)
TPy, Doy D)) = 2Dy, Dy Do) + %Dy D5, D) + 2o(Ds, Dy D) -

The differential equations of stability are, of course, given by dp,/dt =
fi(», psy v,), when all prices are non-negative.

As we mentioned previously, the Walras Law (3 p,x, = 0 for each
consumer, and its consequence, Y p,f; = 0) implies that d(3_ pi)/dt = 0,
so that the motion of the prices will always be on that sphere with
center at the origin which passes through the initial price vector. Let
us assume that the initial prices have been selected such that > p?=3.
When we speak of equilibrium prices we shall mean the intersection
of the equilibrium ray and this sphere.

LemmA 1. The price vector (1,1,1) is an equilibrium price.

This is immediately obvious by an application of the Walras Law to
equations (4), when all of the prices are set equal to ome.

It is not at all correct, for a general selection of the individual
demand functions z,, %,, #;,, that the market demand functions f;, fi, fs
(4) must have a unique equilibrium point at (1,1,1). There are a
number of very simple conditions, however, which imply that this
equilibrium is unique. We shall give only one such set of conditions.

LEmMMA 2. Let
A = 8f,/6p, < 0, and B = of,[op, > 0,
everywhere in the orthant p, > 0, p, > 0, p, > 0. Then the equilibrium
point (1,1, 1) is unique (aside from positive multiples).
In order to demonstrate this lemma, let us first make the observa-
tion that
£iDy, D, 3) = fi(D2y Do D)
oDy, D2y D3) = oD, s, DY)
i@y, Do P3) = [Py Por DY) -
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This implies that if (a, 8, 7) is an equilibrium point, then so is
(B, v, o), and also (v, @, B). Therefore, if we have an equilibrium point
different from (1, 1, 1), then we may find an equilibrium point («, 8, 7),
perhaps by permutation, with either

(5) a=pR=
(at least one of the inqualities is strict), or else
(6) a<BLSY

(again the same remark).

Let us assume that the former holds. An argument similar to the
one we are about to give works if instead of (5) we have (6).

We shall show that fy(a, 8, v) must be different from zero. Now

Fla, B,y =z, B,7) + (B, 7, @) + (v, @, B) .

The assumptions of this lemma imply that as a function of «, f, is
strictly increasing, and as a function of v, f; is strictly decreasing.
Since @ > B > v (with inequality somewhere), we have

fila, By 1) > (B, B, B) + 2B, B, B) + 28,8, 8) =0,

by the Walras Law. This completes the proof of the lemma.

Subsequently, in this paper, we shall have occasion to consider
specific examples of demand functions for which the conditions of
Lemma 2 do not hold for all prices in the orthant p, >0, »,>0, p, >0,
but rather for certain subsets. We shall then have recourse to the
following lemma, which involves a type of subset convenient for us.
The lemma is demonstrated in the same manner as Lemma 2. It
should be noted that the operations involved in the proof of Lemma 2
do not take us out of the set described in Lemma 3.

LEMMA 8. Let the conditions of Lemma 2 hold for the set of prices
(D2 > &, /D, > €, Ds/Dy > €), where ¢ is a small positive number.
Then there are no equilibrium points in this set other than (1,1,1)
and its multiples.

We shall now give a condition on the demand functions which
implies that the equilibrium point (1, 1, 1) is unstable.

LEMMA 4. If C = df,[op, ts positive, at the point (1, 1,1), then this
equilibrium point ts locally unstable in the following sense: there is
a region (on the sphere Y, p} = 3) about the point (1,1,1) such that
any point in this region (other than the equilibrium point) will
move away from the point (1,1, 1).
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The Jacobian of the functions f,, f,, f:, at the point (1, 1, 1) is given by

C A B
B C A},
4 B C

all evaluated at that particular point. Moreover, the functions f;, f., f:
are homogeneous of degree zero, and therefore the Kuler relationship,
at the point (1, 1, 1), tells us that

(7) A+B+C=0.

The Jacobian, therefore, has one characteristic root equal to zero.
The other characteristic roots may be shown to have positive real
parts, because of the assumption C > 0. It is then possible to apply
standard theorems of differential equations (see [4], chap. 13), in order
to deduce local instability. However, the various properties of demand
functions permit a simple independent proof of this fact, which we
shall reproduce here.

Let

Vo, 12 2 = %E (p. — 1),

so that
dv _ _nen _ _
LAZS SIS o 8

We shall show that 3~ f; <0 in a small region on the sphere ) p}=38
about (1,1, 1), (except for this point itself), and this will demonstrate
the lemma. Of course at (1,1,1), > f, = 0. Using the Taylor series
expansion, we obtain

(8) ThA=Lo-v5il
J T 0p,
1 - _pye O 3
+ 3D (0= Do — D 5+ o(v),

where all of the partial derivatives are evaluated at the point (1, 1, 1).
Let us simplify some of the terms. The Walras Law reads ), p,f, =0,
so that differentiating with respect to p,, we obtain

(9) mz:p,gfs =0.
[ p,

At (1,1, 1) this implies Y, 8f,/6p, = 0, and therefore the linear terms
of the Taylor series vanish. Differentiating (9) once more with respect
to p,, we obtain, at the peint (1,1, 1),
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fy _ _{09f of
(10) 2 0p0pe <6’pjk * ) )

From (7), (8), and (10) we see that

Sfi= —5 X (0 = V(s — Dew + 0V,

where
2C, —C, —-C
(e) ={—C, 2C, —C
-C, -G, 2C
Therefore

Tfo= =S = p) + 0. = I + (= B} + OV

But I claim that on the surface ) p} = 3, with all p, > 0, we always
have

(11) D =)+ D—p)+(@—p) 2= % 2 (o — 1.
Accepting this as correct for the moment, we see that

< —_g_cv+ oV,

and therefore ) f, is negative for V sufficiently small.
Equation (11) is demonstrated as follows. First of all, on this sphere

3> E Dy -
Multiplying by 3 », and expanding, we obtain

3. =0+ P+ Bi 4 20 + DD + D)
and by subtracting 9 from each side we obtain

%(—2: o+ 25— 8) > —2(0 + P+ 1) + 20D + Py + DD

which is the same as (11). This finishes the proof of Lemma 4.

We shall shortly exhibit some excess demand functions, derivable
from a utility function, which satisfy the hypothesis of both Lemmas
2 and 4. They will provide us with examples of a unique equilibrium
point, which is unstable locally. Does this imply global instability?
In a certain sense this becomes a matter of definition, the problem
being that it is possible that one of the prices might become zero.
In this event, some care should be taken, since the differential equa-
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tions (2) no longer describe the motion of the prices. In our examples,
we shall use special technicues to demonstrate that the paths actually
stay away from the boundary of the positive orthant.

Now let us consider utility functions for the first consumer of the
form

aa-t-l af,-H aa-H
1 _|__ 2 _l_ 3 ) ,

Uz, ,, 75) = —(
T x8 22 x3

where (a,, a,, @) is an arbitrary non-negative vector, and a is a positive
constant. Let the initial endowment of the first consumer. be repre-
sented by (I, I, I.). As before, we permute the utility function cycli-
cally for the second and third consumers, and also permute the initiai
holdings. .

We shall show that instability arises whenever a > 1, (a,, a,, @) is
close to (b, 1, 0) with 6>(a+1)/(a—1), and (I, L, I,) is close to (1, 0, 0).
(The specific meaning of ‘‘close’” will be clarified.) This will give us ex-
amples with none of the disagreeable features of the simple examples
in Section 2. Let us first examine in detail the case

(0, ayy, o) = (b, 1,0),
(ID Izr L) = (17 0, O) ’
with
> e+l
a—1

A routine caleulation shows us that the excess demand functions

for the first individual are given by

1+a)
bp/te

T = bpHral | pu/ita Tt
1 D
(12) Xy = py e ppa/tra) _;_ p/i+a !
Ty = O .

The reader should notice that if b=1, and a — o, these excess
demand functions tend to those of Section 2.
Let us show that the conditions of Lemma 2 are verified. We have

A=900uDu?) ¢,
op,

B= 020y 2D < ¢
ops
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Therefore the system of market demand functions (4) has a unique
equilibrium point given by (1,1,1). In order to show that it is un-
stable we compute

C = afl
on

at (1,1,1), or

_ab—(b+)—a
@+ Ve + 1)

which is positive if b > (@ + 1)/(a — 1). It follows from Lemma 4 that
for this relationship between a and b the unique equilibrium point is
also locally unstable.

The next step will be to show that for this example the prices stay
away from the boundary of the positive orthant. This will be a con-
sequence of the following lemma.

»

LEMMA 5. Let

@ = Min (&, D JL) _
Py D2 Ds

There is a small positive constant K, such that if

de

K, then ——-
P < en )

>0.

Let us assume that the minimizing value above is p,/p, =e¢, say.
The other cases are handled by a cyclic permutation. We want to
show that d(p/p,)/dt > 0 or p.fy — »fs > 0, if ¢ is sufficiently small.
If f, and f, are computed according to (4), we see that p,fi — p.fs
has the sign of

_Qé_>2+ 1 Ps Py
13) b(l)f)la/uw - b(ﬁ)ﬁ‘w e b(&)a’i’aﬂ, —
y 2 D, De

The first term of (13) is equal to
18
(5) +1
1 al(1+a) ]
b(?) +1

and since p,/p, < 1/¢, we have
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_Ds 1

p2 af (I;)ia) 2 1 af (13!1)
b(_pa-) +1 b(?) +1

Also we have

—Ds 1
D
b(_?L)al(Ha) 1 > ¢
D.

Adding these terms together we see that (13) will be positive if

(l)2+1_——%—b<-1_)1+a/(1+a)>0’
c 4 c

and this is certainly correct for small ¢. This demonstrates Lemma 5.

These observations, taken together, show us that the system of
demand functions defined by (12) gives rise to global instability of the
price adjustment mechanism.

B

/A

[

FIGURE 2
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One more remark is in order. 1 claim that if we take an excess
demand which is close to (12) on a large proper subset of the positive
orthant (and which has derivatives which are close) and form the
market demand functions using the above method of cyclic permuta-
tion, then this will also give rise to global instability. (Such an ex-
ample may be obtained by taking (a, a,, a;) close to (b,1,0) and
(I, I, I) close to (1,0, 0), or in other ways.)

In order to see this let us interpret Lemma 5 geometrically.

Figure 2 represents the surface of the sphere Y pi =3, and the
shaded region the set of points with

Min (&, Ps _p1_> >K,
D D2 Ds

for a small value of K. Lemma 5 tells us that a path which begins
in this region, with X sufficiently small, will never leave the region.
This is true because on the boundary of this region expressions such
as p.fi — Dufs are strictly positive. But this later fact will also be
true for market demand functions based on individual demand functions
close to (12).

It will also be true that inside this region there will be no equi-
librium points other than (1, 1,1). For if the new demand functions
and their derivatives are close to the corresponding quantities for (12)
inside the shaded region, then A for the new demand functions will
be negative, and since it is homogeneous of degree —1 (being a de-
rivative), A will be everywhere negative in the region defined by

Dk B>k Dk,

2 Dz Ps
A similar statement with a reversed inequality holds for B, and there-
fore Lemma 3 may be applied to show that there are no equilibrium
points other than (1,1, 1) in the shaded region.

A similar argument convinces us of the local instability of the equi-
librium point (1,1, 1). It should be remarked that even though we
have said nothing about possible equilibrium points outside the shaded
region for the new demand functions, a path beginning inside the
shaded region will not leave this region.

Stanford University and
Cowles Foundation at Yale University, U.S.A.
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