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ABSTRACT. Irving Fisher’s Ph.D. thesis, submitted to Yale University
in 1891, contains a fully articulated general equilibrium model pre-
sented with the broad scope and formal mathematical clarity associ-
ated with Walras and his successors. In addition, Fisher presents a
remarkable hydraulic apparatus for calculating equilibrium prices and
the resulting distribution of society’s endowments among the agents
in the economy. In this paper we provide an analytical description
of Fisher’s apparatus, and report the results of simulating the mechan-
ical/hydraulic “machine,” illustrating the ability of the apparatus to
“compute” equilibrium prices and also to find multiple equilibria.

I

Introduction

IRVING FISHER’S Ph.D. thesis, submitted to Yale University in 1891, is
remarkable in at least two distinct ways. The thesis contains a fully
articulated general equilibrium model presented with the broad scope
and formal mathematical clarity that we associate with Walras and his
successors. But what is even more astonishing is the presentation, in
the thesis, of Fisher’s hydraulic apparatus for calculating equilibrium
prices and the resulting distribution of society’s endowments among
the agents in the economy.
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Fisher’s development of the general equilibrium model was done
without any knowledge of the simultaneous achievement of Walras.
In the introduction to his thesis, Fisher states that

[t]he equations in Chapter IV, Sec. 10, were found by me two years ago,
when I had read no mathematical economist except Jevons. They were
an appropriate extension of Jevons’ determination of the exchange of two
commodities between two trading bodies to the exchange of any number
of commodities between any number of traders. . . . These equations are
essentially those of Walras.

Even though Fisher’s construction of what we now call the 
Walrasian model of equilibrium was a fully original achievement, he
did have contemporaries: the central ideas of equilibrium theory were
independently discovered at several locations in the final decade of
the last century. But the second theme of Fisher’s thesis was entirely
novel in conception and execution. No other economist of his time
suggested the possibility of exploring the implications of equilibrium
analysis by constructing specific numerical models, with a moderately
large number of commodities and consumers, and finding those prices
that would simultaneously equate supply and demand in all markets.
The profession would have to wait until rudimentary computers were
available in the 1930s before Leontief turned his hand to a simplified
version of this computation.

Fisher’s hydraulic machine is complex and ingenious. It correctly
solves for equilibrium prices in a model of exchange in which each
consumer has additive, monotonic, and concave utility functions, and
a specified money income; the market supplies of each good are
exogenously given. Both additivity and fixed money incomes make
the model of exchange to which his mechanism is applied less than
completely general. But we know of no argument for the existence
of equilibrium prices in this restricted model that does not require
the full use of Brouwer’s fixed point theorem. Of course fixed point
theorems were not available to Fisher and in that section of his thesis
in which first-order conditions are presented for a general model of
exchange, Fisher argues for consistency by counting equations and
unknowns.

It is hard to discover the source of Fisher’s interest in computation.
He was a student of J. Willard Gibbs, and perhaps the theme of 
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concrete models in mechanics was carried over to economics. But it
is also possible that his hydraulic apparatus is simply an instance of
an American passion for complex machinery that gets things done.
Fisher, himself, had a passion for innovation. In the course of a long
career, he invented an elaborate tent for the treatment of tuberculo-
sis (described in the Journal of the American Medical Association,
1903), developed a mechanical diet indicator that permited easy cal-
culation of the daily consumption of fats, carbohydrates, and proteins,
copywrited (1943) an icosahedral world globe with triangular facets
that when unfolded was allegedly an improvement on the Mercator
projection, and patented an “index visible filing system” (1913) sold
to Kardex Rand, later Remmington Rand, in 1925 for $660,000.

II

Fisher’s Cisterns

LET US BEGIN by describing the special model of exchange that is solved
by the Fisher machine. There are, say, m consumers, indexed by 
i = 1, . . . , m and n goods, indexed by j = 1, . . . n. Consumer i has
the utility function

with each uij increasing and concave. Society’s endowment of good
j is Ej, and consumer i ’s income is Yi.

At prices p = (p1, . . . , pn) ≥ 0, consumer i is assumed to maximize
utility subject to his budget constraint

If the marginal utility of income for consumer i is li, the demands,
xij, will satisfy the first order conditions:

A competitive equilibrium is given by a price vector p so that the
market demands obtained by the summation of individual demands
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are equal, commodity by commodity, to the market supply. In other
words, we are asked to find p = (p1, . . . , pn) ≥ 0, l = (l1, . . . , lm) 
≥ 0 and a matrix of commodities [xij], such that

These are Irving Fisher’s equations.
To solve these equations on an electronic computer we would input

the endowment vector E, the income vector Y, and provide a descrip-
tion of the mn marginal utilities (xij) as functions of their arguments.
Fisher invented a clever way to represent a typical marginal utility by
an irregularly shaped cistern that is meant to receive varying amounts
of water during the operation of the machine.

Imagine a cistern with a uniform thickness of unity, and with a
shape shown in Figure 1.

The origin is placed at the northwest corner of the cistern, which
has a vertical height of d units. For each 0 £ x £ d, the width of the
cistern is given by the function f (x). If the cistern is filled with water
up to x units below the top of the cistern, the volume of water it
contains will be

Fisher designs the cistern so that the depth x is equal to the marginal
utility, for that consumer and that good, of the volume of water it
contains, i.e.,

as an identity for all x. With this construction, the maximal depth d
is equal to u¢(0), and one needs to select utility functions with a finite
marginal utility at zero in order to have cisterns of finite depth.
Another feature of this utility function is that the consumer is satiated
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when the cistern is filled to its top and consumption is equal to
.

The connection between the utility function u(x) and the shape of
the cistern f(x) is unusual, and the reader may find it useful to 
calculate f for various well-known utility functions. For example, if
u(x) = -e-x, the shape function is f(x) = 1/x, and the depth, d, is unity. 

As a second example, if , the shape function is 

f(x) = b and the box is rectangular. And finally if f(x) = b + at, with
b + ad > 0, the utility function is given by

u x
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In order to see a way in which these cisterns can be used to solve
an optimization problem, consider a single consumer with utility 
function

Construct a cistern for each utility function uj(xj) and let their tops
be rigidly connected by a rod constrained to be horizontal, but free
to move vertically, so that the cisterns will float in a tub of water
without changing their relative positions. Insert a fixed amount of
water, Y, into the right-most cistern, and let the interiors of the cis-
terns be connected by rubber tubes so that the water flows easily
from one to another.

When the apparatus reaches an equilibrium, the input of water, Y,
will be allocated among the n cisterns, with cistern j containing an
amount xj. The level of water will be the same in each cistern, say l
units below the top, so that

We see that this assemblage of the Fisher cisterns solves the problem
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simply by using the fact that freely flowing water will seek a common
level in the series of interconnected cisterns, thereby equating the
marginal utility for each good to a common price of unity.

We have evaluated the demand functions of this consumer at
income Y, and at prices p = (1, . . . , 1). In order to deal with general
prices, and several consumers, we shall have to assemble the cisterns
in a considerably more complex fashion.

III

A Preliminary Machine: Pareto Optimal Allocations

LET US CONSIDER a construction that is not quite the one used by Fisher,
but that allows us to explore models of exchange with m consumers.
Figure 3 depicts the case of two consumers (I, II) and two com-
modities (A, B). Construct a separate rod for each of the m consumers.
On the rod for the ith consumer, we place n cisterns, one for each
commodity, and for each such good we connect all of the m cisterns
referring to that good by a tube in which water will flow. The west
sides of the cisterns for each commodity are aligned parallel to a float
F lying on the surface of the water. The left end of each rod is attached
to this float, F. The i th rod will make an angle ai with the water
surface.

In this construction the float F is not permitted to move and the
angles ai are fixed in advance. What does move are the cisterns along
each rod; but in the following precisely constrained way.

Constraining the Cisterns

All of the cisterns relating to good j have their northwest corners at
the same horizontal distance, say pj, from their attachment to float F.

The distances from F may shift during the functioning of the
machine but all distances relating to the same commodity are con-
strained to be the same. These distances are determined by inserting,
into the tube for good j, an amount of water equal to the market
supply Ej of that good. The water levels for the m cisterns for good
j reach a common level, and together the cisterns move along the
rods so that this common level is equal to the water level in the 
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surrounding tub (let us not be concerned that a line of cisterns may
very well have to pass through an adjacent line).

Let the volume of water in cistern ij be xij, and the horizontal dis-
tance of the cisterns for commodity j from the float F be pj. We then
have

so that xij is the allocation of the market supplies Ej that maximizes
the social welfare function

when li is given by 1/tan(ai), and is therefore on the Pareto frontier.
And conversely, concavity of the individual utility functions implies

l i
i

ij ij
j

u xÂ Â ( ),

¢ ( ) = ( )u x pij ij j itan ,a

x Eij j
i

=Â

64 The American Journal of Economics and Sociology

F

IIA
IIB

IB
IA

Figure 3



that any Pareto optimal allocation is obtained by some selection of
li and therefore by some selection of these angles ai. Of course,
Fisher wrote before Pareto and this concept does not appear in his
thesis.

Typically this allocation will not satisfy the individual budget con-
straints Spjxij = Yi and the angles of the rods must be systematically
varied so as to find those angles for which the value of consumption
equals income for each consumer. But at this point in our exposition,
it is far from clear how to modify the apparatus so as to compare
consumption and income. Nothing in this machine permits us to cal-
culate the cost of the commodity bundle demanded by a particular
consumer. At no place is a quantity multiplied by a price. We shall
return to this issue after describing Fisher’s somewhat different
arrangement of these cisterns.

Fisher’s Construction (Preliminary)

There are some substantial differences between the instrument
described in the previous section and Fisher’s use of these cisterns,
rods, and floats to accomplish the same end. In Fisher’s arrangement,
the horizontal locations of the northwest corners of the cisterns are
fixed; the only possible movement of these corners is strictly vertical.
This would present a serious constraint for the mechanism described
above, since it does not provide enough flexibility to determine the
relative prices, pj, if the number of goods is greater than two. As we
shall see, Fisher’s modification of the mechanism permits him to
extend the number of goods to three, but no further extension is pos-
sible for him. The number of consumers is arbitrary, though the actual
model constructed by Fisher has three consumers as well.

Let us introduce a coordinate system to describe the fixed hori-
zontal positions of the three cisterns for each consumer along their
common line. The cistern for good 1 will be at the point on its line
with coordinate -1, good 2 at the point with coordinate 0, and good
3 at 1. In Fisher’s machine the northwest corners of the cisterns are
not placed on a single rigid rod as in the previous section; instead
they are attached to a connected pair of rods that pivot above the
middle cistern, as shown in Figure 4. The left rod for each consumer
begins at the point on the line with coordinate -1 - a, passes through
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the corner of the cistern for good 1 at -1, and then through the corner
of the middle cistern for good 2 at 0. The right rod begins at the point
on the line with coordinate 1 + c, passes through the corner of the
cistern for good 3 at 1, and then joins the left rod at the corner of
the cistern for good 2.

The beginnings of these pairs of rods are secured on two floats,
one to the left at coordinate -1 - a and the other to the right at coor-
dinate 1 + c. The floats are permitted to move laterally, so that the
values of a and c are arbitrary. Let us also assume for the moment
that the northwest corners of the cisterns describing the same good,
for the various consumers, are all connected by a rigid bar parallel
to the surface of the water, so that all of these corners are forced to
be at the same height. Movement of the floats implies sliding pivots.

As before, the cisterns for a common good are connected by tubing
through which water will move freely. A quantity of water equal to
the supply of that good is entered into the corresponding tube by
setting the levels of certain plungers at the back of the tub. The water
levels for the cisterns for each commodity will find a common level,
and subsequently the floats to the right and left will move so that all
of the cistern levels, for each consumer and for each good, will equil-
ibrate at the water level of the tub. If the quantity of water in cistern

66 The American Journal of Economics and Sociology

Figure 4

F

IIA
IIB

IIC

IA
IB

IC

F



ij is xij then Sixij = Ej for each good. Moreover, the surface of the
water in each cistern referring to good j is at the same depth below
its northwest corner, so that for each j the marginal utilities (xij) are
identical for all consumers i.

If we set pj = (xij) we see that the apparatus has found an allo-
cation xij and prices p such that

As with the previous construction, the hydraulic instrument has 
produced a particular Pareto optimal allocation; in this case the 
allocation with the marginal utility of income equal to unity for all
consumers. Other Pareto optimal allocations can be found by multi-
plying each utility function by a nonnegative constant, or by allow-
ing the bars connecting the northwest corners of the cisterns to make
an angle with the surface of the water different from zero.

But it is still not clear how to find an efficient allocation in which
the value of consumption is equal to income for all consumers. A
reasonable scholar might perfectly well have given up at this point,
but Fisher persisted with an ingenious and intricate modification of
the apparatus, designed to solve this problem.

It would be difficult to improve on Fisher’s description of the final
mechanism. The next section is taken directly from his thesis. He
denotes the consumers by I, II, III and commodities by A, B, C. His
statements about marginal utilities and their relationship to prices are
only true at equilibrium.

Fisher’s Construction (The Schematic Figure 5 and Text Taken from 
Section 4 of His Thesis)

The water in these cisterns must be subjected to two sets of conditions,
first: the sum of all of the contents of IA, IIA, IIIA, etc., shall be a given
amount (vis: the whole of the commodity A consumed during the given
period) with a like given sum for the B row, C row, etc., secondly: the
sum of IA, IB, IC, etc., each multiplied by a coefficient (the price of A, of
B, of C, etc.), shall be given (vis: the whole income of I during the period)
with a like given sum for the II row, III row, etc.

¢ ( ) =u x pij ij j.

x Eij j
i
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¢uij

¢uij
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To realize these two sets of conditions each cistern is divided into two
by a vertical partition of wood. The front compartments are all of unit
thickness one inch (say). All front compartments belonging to the same
front-and-back row are mutually connected by tubes (in the tank but not
in connection with the water of the tank) thus fulfilling the first set of 
conditions.

The thickness of the back compartment is adjustable but is (as will soon
appear) constrained to be always equal to the price, thus if the price of
A is $1, of B $3 and C $1.20, the thickness of all of the cisterns in the A
row will be 1, in the B row 3 and in the C row 1.2 (inches).

Since the thickness of the front compartment is unity, the contents of
each back compartment equals the contents of the front multiplied by the
number of inches of thickness of the back cistern, that is the back com-
partment contains a volume of water equal the amount of the commod-
ity multiplied by its price. It contains therefore the money value of the
commodity. The double cistern represents the double light in which each
commodity is commonly regarded—so many pounds, yards, etc. and so
many dollars worth.

All back compartments of the same right and left rows are mutually
connected by tubes—that is the sum of their contents is given—thus ful-
filling the second set of conditions.

The back compartments can change their thickness, as the walls at the
right, left and bottom are of flexible leather; the back plane is kept par-
allel to the wood partition by two double “parallel rules” not diagrammed.

There remains to be described the system of levers. The purpose of
these levers is to keep the continuous ratio of marginal utilities, the same
for all individuals and equal to the ratio of prices.

First there is a system of oblique levers [our Figure 5] connected by
sliding pivots with the tops of the cisterns and having their lower extrem-
ities hinged to wooden floats F, the hinges being at the level of the water
of the tank. The floats are free only to shift latterly. It is evident from . . .
similar triangles in [our Figure 5] that the ordinates of the 2 cisterns IA
and IB are proportional to the distances of the A and B rods . . . from the
hinge in the left float F. Likewise in the row behind, the ordinates are
proportional to each other and in general all of the ordinates of the front
row are proportional to those of the row next behind and so on. Remem-
bering that each ordinate is a marginal utility we have:

which is the required condition that the marginal utilities must be 
proportional.

Secondly there are the horizontal levers (F34, etc., Figure 10 [our 
Figure 6]) lying on the surface of the water in the tank. These relate to
prices. The sliding pivots 3, 4 are connected to the rods RRR, which in
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turn are connected by vertical pins with the rear walls of the cisterns. A
motion of one of those rods causes all of the back compartments to
expand or shrink in unison. The pivots 3, 4, etc. are so situated on these
rods that if the levers F34, etc. should assume a right-and-left position
along the dotted line FF, the back compartment of every cistern would
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Fisher’s apparatus.
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be completely closed. Hence R3 equals the thickness of each back com-
partment in th A row, R4 the corresponding thickness in the B row and
so on.

By the similar triangles FR3 and F34 in Figure 10 [our Figure 6], it is
clear that the lines R3 and R4, and consequently the rear thickness in the
A and B rows are proportional to the distances of the A and B rods R and
R from the float F. But we have just seen that the ordinates of IA and IB
are proportional to these same distances. Hence the thickness of the back
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compartments of the cisterns are proportional to the ordinates of those
cisterns, that is to marginal utilities. Hence we are free to call the thick-
ness of each back compartment, the money price of the commodity to
which that cistern relates.

It is to be observed that the cisterns are free to move only vertically,
the rods and rear cistern walls only forward and backward, the wooden
floats can shift sidewise right and left while the levers assume such posi-
tions as the mechanism compels.

This ends our direct quotation from Fisher’s thesis, and his descrip-
tion of his machine. In the next section, we describe our computer
simulation of his model.

The Digital Version of the Fisher Machine

Did Fisher’s machine work? We knew it must have, at least after a
fashion, because Fisher reports that for 25 years he used his first
model in teaching. But we were curious to see it work, and could
not help wondering whether the floats would come to rest against
their stops rather than in a “market” equilibrium. After some roman-
tic thoughts about replicating the machine, tub, water, and all, we
settled on simulating the machine in Matlab. The physical features of
the Fisher apparatus fall into two groups. The properties of the first
group—the quantity and expenditure cisterns and the system of rods
controlling the elevations of the cisterns and the price dimension of
the expenditure cisterns—determine the equilibrium prices and allo-
cation, and when the system is out of equilibrium they determine the
forces and pressures that move the rods, cisterns, floats, and bellows
themselves. The second group of features—the tubes connecting the
quantity and expenditure cisterns, the mass and surface area of 
the floats, the viscosity of water—govern the speed of adjustment of
the system when it is out of equilibrium.

Our mathematical description of the first group of features is
straightforward and faithful to the hydraulic model, except for ignor-
ing the actual model’s “imperfections”—the nonzero mass of the rods
and the thickness and mass of the walls of the cisterns. For any posi-
tion of the consumer and price rods, we use Archimedes principle
and the weight of water in each of the cisterns to calculate the 
vertical forces they exert; these forces are resolved into a rotational
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force on each consumer’s rods, and a force inward or outward on the
two floats. The inward or outward pressures on the price bellows of
each consumer’s expenditure boxes are calculated from the differ-
ence in the level of water inside and out of the expenditure cisterns.
The resulting forces are transmitted to the price rods, and are also
resolved into rotational forces and inward or outward forces on the
floats.

The construction of the Fisher model guarantees that in equilibrium
or out, the quantity of water summed over each individual’s expen-
diture cisterns always equals that individual’s money income, and the
quantity of water, summed over an individual’s quantity cisterns,
always equals the social endowment for each commodity. Tubes
allow these fixed quantities to flow among the expenditure cisterns
for each individual, and among commodity cisterns across individu-
als for each commodity. This preservation of quantities is easy to
mimic in the Matlab version. As explained in the previous section by
Fisher, if the level of the water in each of the quantity and expendi-
ture cisterns is the same as the level of water in the tub, each con-
sumer will be maximizing utility subject to his or her budget constraint
and the prices and allocations will correspond to a competitive equi-
librium. This condition obviously implies that for each cistern, the
Archimedes forces are exactly balanced by the weight of water in the
cistern; in both the hydraulic and Matlab model, if the system is at
rest in a competitive equilibrium, there are no net forces to disturb
it. It is an intriguing question, whose answer we do not know,
whether there are any rest points in which the level of water in the
cisterns is different from the level in the tub.

In contrast to its accurate description of the features of the hydraulic
model determining equilibrium, the Matlab model is an approxima-
tion of several features governing the dynamics of adjustment. Rather
than the continuous, real-time, adjustments in the hydraulic machine,
adjustments in the Matlab model are discrete, iteration by iteration.
Three speeds of adjustment are crucial to the dynamics—the speed
with which water flows among cisterns, the speed with which the
cisterns move up or down in the tub and the price bellows expand
or contract, and the speed with which the pivot floats move in or
out. The diameter, length, and surface characteristics of the tubes 
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used by Fisher to connect the cisterns are not known to us, nor 
are the mass, displacement, or surface area of the floats. If the dimen-
sions of the tubes were known, textbook fluid mechanics could be
used to calculate the flow as a function of pressure differentials, vis-
cosity, surface frictions, etc.; those same textbooks suggest that as a
practical matter, there is no substitute for estimating the flow exper-
imentally. Similarly, while it might be theoretically possible to calcu-
late how far in a moment of time a given force would move a
cistern—up or down—in the tub, as a function of its mass, shape, 
and surface areas, it would have been a daunting task. In our simu-
lations, what is important are the relative speeds of adjustment. Our
intuition suggested that the vertical movements of the cisterns, the
inward or outward movements of the floats, and the adjustment of
the price bellows were likely to be much quicker than the adjust-
ments of the fluid levels through the tubes. The results of a casual
experiment, using a one-liter coke bottle as a proxy for a cistern 
and a one-foot length of 5/8≤ hose for a tube, were consistent with
that intuition; a bottle of water two/thirds full came to a displacement
equilibrium in a tub much faster (by a factor of something like 10)
than when the same bottle was emptied into the tub by the hose.
This led us to choose the parameters in the model so that the adjust-
ments of the consumer rods, bellows, and floats are much more rapid
than the equalization of water levels in the commodity or expendi-
ture cisterns.

Given these parameter choices, price and consumer rods adjust to
almost completely eliminate the net forces on them, while significant
differences in the level of water in the various cisterns remain. Start-
ing from an arbitrary initial condition, there is typically a rapid adjust-
ment of rods and floats, followed by a much longer period during
which the water flows among the cisterns and the entire set of vari-
ables move slowly together. In our actual simulations it does not
appear that the stability of the adjustment mechanism is much affected
by the precise values of these parameters, so long as the step size,
corresponding to an iteration, is kept small. As will be seen, the
adjustment paths display this qualitative behavior; from an initial dis-
equilibrium of both prices and quantities, prices adjust rapidly to
levels that balance the forces on the rods, followed by much slower

Brainard and Scarf on Equilibrium Prices 73



adjustment as the water flows between cisterns. The Matlab model
also ignores two physical phenomena that could, in principle, be
important to the dynamics of adjustment—the increase in drag that
results from increases in velocity, and inertia. Inertia could, even with
continuous time, result in overshooting, with damped oscillations of
the system, around equilibrium values. The equations used in the
MatLab program are found in the Appendix.

Fisher’s Use of the Machine

Fisher regarded his model as “the physical analogue of the ideal eco-
nomic market” (Mathematical investigations, p. 44), with the virtue
that “[t]he elements which contribute to the determination of prices
are represented each with its appropriate role and open to the scrutiny
of the eye . . .” providing “a clear and analytical picture of the inter-
dependence of the many elements in the causation of prices.” Fisher
also saw the machine as way of demonstrating comparative statics
results “to employ the mechanism as an instrument of investigation
and by it, study some complicated variations which could scarcely be
successfully followed without its aid.” We do not know how trans-
parent the model was to Fisher’s students, but it is easy to imagine
the excitement they may have felt in watching the model at work,
accompanied by enthusiastic commentary by Fisher.

In principle the Fisher model will find the competitive equilibrium
for any three-commodity, three-person exchange economy with addi-
tively separable preferences, with the restriction that individuals’
endowments are some fraction of the aggregate commodity endow-
ment bundle—a restriction implicit in the assumption that individ-
uals are endowed with fixed money incomes rather than arbitrary
bundles of commodities. To find a particular equilibrium merely
requires specifying the shapes of the 3 ¥ 3 cisterns, and prescribing
the aggregate supplies and individual endowments. As previously
explained, for the Fisher machine to work, the preferences and quan-
tity endowments must be assigned to rows so that in equilibrium the
commodity in the middle row has the highest marginal utility. Given
preferences and initial quantities, comparative static results can be
obtained simply by altering the aggregate supplies or individual
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endowments as desired and observing the new equilibrium prices and
allocation.

Although we do not know what experiments Fisher actually ran
with his machine, he does describe eight comparative static exercises.
Some of these illustrate basic features of the system, for example, that
proportional increases in money incomes result in an equal propor-
tional increase in each price, with no change in the allocation of
goods. Another simple exercise discussed by Fisher examines whether
proportional increases in the endowment of goods necessarily result
in proportional decreases in prices, as was apparently, and incorrectly,
believed by Mill. Some exercises illustrate less intuitive properties of
exchange economies: increasing one individual’s income may make
some other individual better off and also the possibility of “immiser-
ating growth,” i.e., increasing an individual’s endowment of a good
may actually lower his or her welfare.

Although Fisher discusses the way in which changing an individ-
ual’s preferences alters the equilibrium, it was expensive to change
the cisterns in his model and it seems unlikely they were changed
after some initial experimentation. The cisterns in Fisher’s original
1893 model included a fairly rich variety of shapes; the cisterns in his
1925 model look like they may all have rectangular faces, corre-
sponding to quadratic utility functions. While Fisher’s construction
made it difficult to vary preferences, his set up made it easy to change
quantities; by simply moving a plunger for a commodity or individ-
ual’s income he could force more water into the associated column
or row of cisterns.

Dynamics of the Machine

We used our Matlab representation of the hydraulic machine to sim-
ulate the path of adjustment for a variety of preferences, endowments,
and initial conditions. We do not have a basis for comparison with
Fisher’s actual model; Fisher does not analyze or describe the dynamic
behavior of his machine.

It is easy to imagine that, as Fisher slowly depressed a quantity
plunger to change the equilibrium, the flows of water between cis-
terns and the movements of lever arms were rapid enough to keep
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the system in the neighborhood of the shifting equilibrium; it is likely
that in Fisher’s experiments the initial conditions were never very far
from equilibrium. In contrast, in our simulations we typically started
the system with arbitrary allocations of the quantities to the cisterns
(dividing the quantities equally across individuals and expenditures
by individuals equally across commodities) and arbitrary prices. As 
a consequence our simulations show rapid movements of prices 
early in the adjustment process, with substantial discrepancies
between the quantity of a commodity j being allocated to individual
i, q[i, j ] and the quantity of that good that could be purchased 
by the allocation of expenditures on commodity j by individual 
i, qe [i, j ], given current prices. These characteristics are evident in
three examples given in Figure 5, which display paths of prices, and
these discrepancies for the first commodity (q [i, 1] - qe [i, 1]) during
the adjustment process.

It is difficult to imagine an economic interpretation of Fisher’s
adjustment process. Throughout the adjustment process individuals’
commodity allocations sum to the social endowment, and each 
individual’s money income is exactly exhausted in that individual’s
expenditure cisterns. However, allocations are not on the contract
curve (ratios of marginal utilities are not the same across individuals),
individuals are not maximizing utility (the ratios of the marginal util-
ities of the quantities being consumed by an individual are not the
same as the ratios of prices), and the value at current prices of a good
allocated to an individual is typically not equal to the nominal income
allocated to purchase that good by the individual (the water level in
the front and back cisterns for a given commodity need not be equal).

An Example of Multiple Equilibria

The restrictive assumptions on preferences and endowments embod-
ied in the Fisher machine are not sufficient to guarantee uniqueness.
Indeed it is possible to have multiple equilibria even if the additively
separable preferences are restricted to be quadratic. How would the
machine behave if in fact there is more than one equilibrium? A com-
bination of preferences and endowments that gives rise to multiple
equilibria is specified in the following example.
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This example has several special features that helped make it rela-
tively easy to construct, for example, two of the individuals are iden-
tical. It was not difficult to find the three equilibria of this example
by starting the simulations in appropriate places. The paths of adjust-
ment for the three different initial conditions shown in Figure 7
display the characteristics expected of the Matlab model. Consistent
with the relatively rapid adjustment of the lever arms and floats com-
pared to fluid flows, prices adjust rapidly at the start and are almost
coincident with the y axis, whereas elimination of discrepancies in
the levels of water in the cisterns (not shown), and discrepancies
between q [·] and qe [·] are much more gradual. It is interesting to note
that for equilibrium 2 the process of adjustment seems to have been
almost completed after 2,500 iterations, but, reminiscent of Lorentz’s
examples from meteorology, after another 1,000 iterations the system
moves off and converges to equilibrium 1. This adjustment path is
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Example

Each cistern is a rectangle.

Consumer 1 has income of 5 and cisterns of size:

Consumer 2 has income of 2.5 and cisterns:

Consumer 3 has income of 2.5 and cisterns:

The supplies of the three goods are:

400, 49.5, 400

23 ¥ 3.61.5 ¥ 126.5 ¥ 26

23 ¥ 3.61.5 ¥ 126.5 ¥ 26

13 ¥ 263 ¥ 1246 ¥ 3.6
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shown in Figure 8. Since we do not have an economic interpretation
of the dynamics of adjustment in the hydraulic model, we cannot
make use of the usual economic propositions about the equilibria,
for example, the role of the assumption of gross substitutability in
guaranteeing uniqueness of the competitive equilibrium and stability
of the Walrasian price adjustment mechanism.

Appendix

The equations used in the digital version of the Fisher machine are
given in Figure 9. The state of the system is given by the values of
24 state variables—the nine commodity and nine expenditure alloca-
tions (xij, yij), two float locations (a, c), three consumer rod angles
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(ai), and a single price rod angle (b). Together these 24 variables
determine 40 other variables used in the solution of the model. The
sets of equations in (1) through (6) give the constraints and relation-
ships among these variables. The condition that the commodity and
expenditure allocations add up to the exogenous commodities and
incomes (Ej, Yi) are given by six equations in (1) and (2). Not count-
ing these equations there are 18 independent equations and variables.
The equations in (3) give the heights of the cisterns above the surface
of the water (hij) as determined by the lever arms laj, lcj implied by
the float locations and consumer rod angles (ai). Equations in (4) give
prices as a function of the same lever arms and the price rod angle
(b). Equations (5) and (6) give the depth of water in the commodity
and expenditure cisterns (xij, Yij) implied by the commodity and
expenditure allocations.

In equilibrium the heights for the cisterns above the surface of the
water in the tub (hij), the marginal utilities implied by the commod-
ity allocations ( (xij)) and the marginal utilities implied by the expen-
diture allocations ( (yij /pj)) are all equal and proportional to the
prices.

Equations (7) through (11) give the adjustment of the 24 state vari-
ables iteration by iteration as a function of the forces on the rods and
floats when the system is out of equilibrium. (For economy of pres-
entation and computation the adjustments of a and c assume that the
moments of the consumer rods are zero, equivalently that the (ai)
and (b) are changing so slowly that the motion of the cisterns through
the water induces neglible resistance.)

¢uij

¢uij
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